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J.  Phys. A: Math. Gen. 18 (1985) 101-111. Printed in Great Britain 

Self-avoiding walks in wedges 

J M Hammersley and S G Whittingtont 
Trinity College, Oxford, UK 

Received 5 July 1984 

Abstract. We consider the number of self-avoiding walks confined to a subset Zd(f-) of 
the d-dimensional hypercubic lattice Zd, such that the coordinates (x , ,  x2 , .  . . , x,) of each 
vertex in the walk satisfy x, 3 0 and O <  xk  < f k ( x , )  for k = 2 , 3 , .  . . , d. We show that if  
f k ( x )  + CO as x + CO, the connective constant of walks in Zd(f) is identical to the connective 
constant of walks in Z d .  We also explore conditions onfk which lead to a smaller connective 
constant for walks in Zd(f) and, in particular, consider walks between two parallel 
( d  - I)-dimensional hyperplanes. Finally we contrast some of these results with recent 
work by Grimmett on percolation on subsets of the square lattice. 

1. Introduction 

Self-avoiding walks with various geometrical constraints have been studied as models 
of polymer adsorption (Hammersley er a1 1982), steric stabilisation of dispersions 
(Dolan and Edwards 1975, Levine et a1 1978) and the behaviour of polymers in slits 
and tubes (Daoud and de Gennes 1977, Wall et a! 1977, Wall and Klein 1979). Because 
of the analogy between the polymer problem and the behaviour of magnetic systems 
(Daoud et a1 1975) those models are also useful in understanding surface magnetism 
and the behaviour of slabs of magnetic material (Binder 1983). 

Cardy (1983) has recently considered the critical behaviour of a magnet in d 
dimensions, bounded by two ( d  - 1)-dimensional hyperplanes which meet at an edge. 
In particular he used renormalisation group methods to study the critical exponents 
for correlation functions and susceptibilities for spins close to the edge. The polymer 
analogue of this problem can be obtained by considering D-dimensional spins on each 
d-dimensional lattice site and letting D+O, (Daoud et a1 1975, Barber er al 1978). 
One is then interested in the numbers of self-avoiding walks starting at the origin and 
confined to lie between these planes, and the subsets of these walks which either return 
to one of these planes, or to the edge, at their last step. 

In this paper we shall prove that these three classes of self-avoiding walks have 
the same connective constant ( K )  as self-avoiding walks with no such geometrical 
restrictions. In fact we study the more general problem of walks on a d-dimensional 
hypercubic lattice such that the coordinates (x l ,  x2, . . . , x d )  of each vertex in the walk 
satisfy OS x,, O S x k  S f k ( x I )  for 2 s  k s  d. We establish sufficient conditions on the & 
to ensure that the walks, subject to these restrictions, have connective constant K .  We 
also discuss conditions on fk which are sufficient to ensure that the connective constant 
is strictly less than K and, in particular, study walks confined between two parallel 
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102 J M Hammersley and S G Whittington 

planes, a distance L apart. In this case we show that the connective constant K(L)  is 
a strictly monotone function of L and tends to K as L tends to infinity. 

Finally, we compare some of our results with recent work by Grimmett (1981, 
1983) on percolation on subsets of the square lattice. The behaviour for percolation 
is characteristically different to that for self-avoiding walks. 

2. Definitions and notation 

We work in d-dimensional Euclidean space I W d  with d 2 2, writing x = (x , ,  x2,. . . , X d )  

for a typical point and its coordinates: here bold-face type signifies vectors, so that a 
typical sequence of points x,,  x2, .  . . should not be confused with the coordinates 
x l r  x2 , .  . . of x. The vector inequality 

a s x s b  (2.1) 

is an abbreviation for 

Uk 5 Xk bk ( k =  l , 2 , .  . ., d )  

and the set of all x lying in a closed interval of the form (2.1) is called a box. A box 
has 2d faces, these being the ( d  - 1)-dimensional subsets obtained by substituting 
equality for one of the 2d inequalities in (2.2); but not all of these faces will be distinct 
unless a < b. The smallest box that contains some bounded set of points S is called 
the snug box for S. A translate of S is the image of S under a transformation x + x + a 
for some constant vector a. We write e,, . . . , ed for the unit vectors in the positive 
directions of the coordinate axes I W d .  

Given a set of non-negative functions f i , f 3 ,  . . . ,fd, the set of all points x whose 
coordinates satisfy 

XI 3 0, f k ( X I )  x k  2 o  ( 2 5  k s  d )  (2.3) 

is called an f-wedge and denoted by Rd(f). The hypercubic lattice Z d  is the set of all 
points of R d  with integer coordinates: and Z d ( f )  denotes the intersection of Z d  and 

An n-stepped walk is an ordered sequence zo, z I ,  . . . , z ,  of points of Z d  such that 
successive points are unit distance apart: and it is an n-stepped selfavoiding walk 
(abbreviated hereafter as an I ~ - S A W )  if these n + 1 points are all distinct. We call the 
points zo, I,, . . . , z ,  the vertices of the walk, we say that a walk w visits a point z of 
Z d  if z is one of its vertices, and we use adjectives such as first, earliest, last, etc with 
natural reference to the order of the sequence zo, . . . , z,. Two walks are equivalent if 
one is a translate of the other; and often we are only interested in the properties of 
TI-SAWS to within equivalence. In that case we can standardise an n-SAW w by taking 
its first vertex at the origin (zo = 0) and representing it by a sequence of steps w = 
u1u2. .  . U,,, where each step uz = z ,  - z , - ~  takes one of the 2d possible values +ek 
( k =  I ,  2 , .  . . , d ) .  We write c, for the number of n-SAWS with z o - C  and C ( n )  for the 
set of these walks: and we know (Hammersley 1957) that 

R d ( f ) .  

tI+X lim n - '  log c, = K ,  (2.4) 

where K ,  which depends only on d, is the so-called connective constant of Zd.  (Note, 
however, that the term connective constant is sometimes used instead for p = eK ; so 
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care is needed to identify the usage in any particular paper in the literature.) Similarly 
we write c , ( f )  for the number of n-sAws with zo=O with all their vertices in Z d ( f ) .  
We are then interested in conditions upon f such that 

lim n-' log c , ( f )  = K (2.5) 
n - c s  

may be true or false. We shall see, in due  course, that a sufficient condition for the 
truth of (2.5) is 

lim f k (  x )  = CD ( 2 s  k a d ) ,  (2.6) 
X ' X  

and conversely that (2.5) is false iffk is a bounded function of x for at  least one value 
of k. 

An n-stepped self-avoiding circuit (abbreviated as  SAC) is an  ( n  - I ) - S A W  whose 
first and  last vertices zo and z,-~ are unit distance apart. If zo, z I , .  . . , are the 
successive vertices of a n  n-SAC, then any cyclic permutation of these vertices is also 
a n  n - s A c ;  and  so too is the reverse permutation zn-', zn-2 ,  . . . , zo and all the cyclic 
permutations of this reverse permutation. The resulting set of 2n H - S A C S  that originate 
from a given n - w c  may be regarded as a single geometrical entity called an  n-stepped 
selJlavoiding polygon (abbreviated as n-sAP).  (An n-sAc  is a rooted, directed n - S A P . )  
Two  SAPS are equivalent if one is a translate of the other. Thus a standardised 
representative of a n  equivalence class of n-sAPs is an n-sAP that visits the origin of Z d ,  
because each n - s m  is a n  unrooted undirected cycle. We write pn for the number of 
inequivalent II-SAPS visiting the origin, and  p n ( f )  for the number of those having all 
their vertices in Z"(f). Parity considerations on Z d  require that any n-sAP must have 
n even; and  hereafter we tacitly adopt the convention that n is always even in any 
statement involving  SAPS. We know (Hammersley 1961 ) that 

and so we enquire whether or not 

lim n-I log pn(f) = K .  
n - 5  

If there is some integer xo  3 0 such that f k ( x o )  = 0 for all k = 2 ,3 , .  . . , d ,  there can be 
no  n-sAPs in Z d ( f )  for arbitrarily large n because they could not enjoy two different 
routes forwards and backwards through the resulting bottleneck in the hyperplane 
x I  = xo. In discussing ( 2 . 8 )  we therefore impose, without essential loss of generality, 
the condition 

f d ( X ) >  1 .  (2.9) 

We shall prove that (2.6) and  (2.9) are sufficient conditions for the truth of 

lim inf n-' log p n ( f )  z K ,  
n-c€ 

and hence for the truth of (2.5) and ( 2 . 8 )  in view of the trivial inequality 

(2.10) 
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coupled with (2.4). (Note that (2.9) is no longer needed for (2.5), because a separate 
return path to the origin is then unnecessary.) 

3. Bellman’s theorem 

A pattern P is a prescribed finite sequence of steps, and is said to occur on a walk w 
if it is a subwalk of w. Successive occurrences may overlap: for example, when a’ = 2, 
we may write w = NE3SE2N for the walk whose successive steps are north, east, east, 
east, south, east, east, north and the pattern P =  E2 occurs three times on w. Given 
any particular pattern P, we can always find a P6lya walk on which P occurs as often 
as we wish; but the situation is quite different if w is a SAW. Obviously P cannot occur 
on any SAW unless P is a SAW itself, It is also possible to find patterns P that may 
occur once or twice on SAWS in Z d  though never more often than twice. Thus the 
12-stepped pattern P =  NWS2E4N2WS occurs twice on the 3 5 - s ~ ~  w = PWN2E5S2WP, 
but P can never occur thrice on any SAW in Z2; and this sort of ‘lobster-pot’ or ‘trapdoor’ 
construction can readily be generalised to Zd for any d z= 2. On the other hand, if 
k > 2, there are no patterns that can occur k times on a SAW but never k +  1 times, for 
the following reason. 

Theorem. If a particular pattern P occurs three times on some SAW in Zd,  then P can 
occur infinitely often on an infinite SAW in zd.  
This theorem, intuitively motivated by the fact that a walk has just two ends, needs 
careful proof because successive occurrences of P may overlap and become highly 
entangled with each other in the rich topology of high-dimensional space. 

Let PI,  P2, P, be the first, second and third occurrences of P on a SAW w ;  and write 
B,, B2, B3 for the respective snug boxes of PI,  P2, P,. These three boxes all have the 
same shape, size, and orientation, because the same pattern P is snug in each; but B1, 
B2, B3 must occupy different positions in Rd, for B ,  = B2 would imply that PI and P2 
exactly coincided in violation of the self-avoidance of w. Hence at least one complete 
face of BI must lie strictly outside B2. But PI ,  being snug in B,, visits every face of 
B, ;  so PI contains a vertex outside B2. This vertex cannot lie in any overlap of PI  and 
P2, because P2 lies wholly in B2; so this vertex precedes all vertices of P2 on w. Hence 
there is a non-empty class of vertices on w lying outside B2 and preceding all vertices 
of P2; and this class possesses a latest vertex VI  on w. Similar consideration of B2 # B3 
guarantees the existence of an earliest vertex V, outside B2 and succeeding all vertices 
of P2. Let w2 denote the subwalk of w from VI  to V,. Discard all steps of w except 
the steps of w2. Then w2 has just two vertices outside B2, and there exists a box B, 
(whose interior strictly contains B2) such that only the first and last vertices of W2 lie 
on the faces of B,. (B, is not snug for w2.) If  VI and V3 do not lie on opposite faces 
of B,, we may append some extra steps to the end of w2 to make this happen; and we 
can ensure that the extended walk is still a SAW by suitably utilising steps confined to 
the surface of B,. Finally we can add one more step to the end of this extended w2 
to reach a vertex outside B,. This yields a pattern Q, which is a SAW containing the 
pattern P, such that the infinite repetition QQQ . . . is an infinite SAW on which P occurs 
infinitely often. 

This theorem is known as Bellman’s theorem on account of the Bellman’s remark 
‘What I tell you three times is true’ (Carroll 1876); but Carroll needed 42 boxes ‘all 
carefully packed’ in his account. 



Selj-avoiding walks in wedges 105 

4. Proof of (2.10) 

Prescribe an even integer N > 0 and consider the set of points of Z d  satisfying 

XI =o ,  O s X k s N  ( 2  s k s  d ) .  (4.1) 

This set contains M = ( d  - 1 ) Nd-l unordered pairs of adjacent points, which we index 
in some fixed manner by i = 1,2 , ,  . . , M. Now consider an N-SAP translated so that 
its snug box has the form 

O s x s b .  (4.2) 

No coordinate of b can exceed N, and the N - S A P  must pass through at least one pair 
of adjacent vertices on the face x I  = 0. So we can index this N-SAP by the index i 
( 1 s i s M ) ,  using the smallest available index if the N-SAP passes through more than 
one pair of adjacent vertices on the face x 1  = 0. Similarly, we can classify the N - S A P  
by a second index j ( 1  s j  s M ) ,  corresponding to a pair of adjacent vertices that it 
visits on the face xI = b ,  of its snug box (using, of course, the same fixed indexing as 
in (4.1) but with xI = b l ) .  The indexing i , j  partitions the set of all inequivalent N - S A P S  
into M 2  disjoint subsets P,,, of which some subsets may be empty. 

Now consider two N-SAPS, the first a member of P,, fitted into a snug box (4.2), 
and the second a member of $k translated to fit into a snug box 

b ,  + 1 s x I  s bj,  OsXkCbL ( 2 s  k s  d ) .  (4.3) 
Since the second suffix of P,, equals the first suffix of $k,  the two SAPS will have parallel 
adjacent edges on the faces x I  = b ,  of the first SAP and x I  = b, + 1 of the second SAP. 

We can remove these two edges and replace them by a pair of edges between the two 
faces, thus concatenating the two SAPS and constructing a 2 N - S A P .  Further, given any 
2N-SAP constructed in this manner, we can reverse the process and uniquely recover 
the pair of N-SAPS from which it was derived. Hence, if p,, denotes the number of 
N-SAPS in the subset P,,, and P is the M X M matrix P = ( p , , ) ,  the total number of 
2N-SAPS constructed by this concatenation and belonging to the subset < k  is the 
( j ,  k)-element in P2.  By repeated concatenation, we can construct a set of inequivalent 
Nr-SAPS,  whose number is the sum of the elements in the matrix P'. Moreover all 
these Nr-SAPS can be translated to fit into snug boxes of the form 

a ,  s x, c b , ,  0 s  X k  s bk N ( 2 s  ks d ) ;  (4.4) 

a , a a ( N )  (4.5) 

and all these snug boxes will be contained in Zd(f) provided that 

for some number LY depending on N, in view of ( 2 . 6 ) .  
We now wish to construct a polygon, in Z d ( f ) ,  which visits the origin and contains 

the edge between the points (U,, u 2 , .  . . , uq, .  . . , u d )  and (U,, U,,. . . , uq + l., . . . , ud)  in 
the face x ,  = U ,  = b ,  of its snug box 0 s  x s b. If we write e ;  for a succession of U steps 
in the direction ek and 2; for a succession of U steps in the direction -ek, a polygon 
satisfying these conditions can be written as 

provided that ud 2 2. If ud = 0 or 1, an appropriate polygon is 

II, = e lul -1e2u2.  . . e d U d e l e q e d Z I Z q e d u d ~ ~ ~ ~  . . . z2U2z,u1-l. 
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After translation, II, fits into the snug box 

0 s  x k  s u k +  8 k  

with 

i f k = q  
otherwise 

and n, fits into the snug box (4.6) with 

if k =  q or d 
otherwise. 

(4.6) 

(4.7) 

(4.8) 

These SAPS will belong to some class P ,  provided that u k  < N for 2 S k s d. By choosing 
an integer q (2 d q S d )  and integers uk < N, k = 2 , .  . . , d, we can construct for some 
io a SAP belonging to PLO/ for any given value of j = 1,2,  . . . , M,  and this polygon can 
be concatenated in front of any Nr-SAP by taking a ,  = u I  + 1. The SAP formed by this 
concatenation will be contained in i Z d ( f )  provided that 

UI Z P ( N )  (4.9) 

for some integer P ( N ) ,  because of (2.6). By choosing u I  appropriately, subject to 
(4.9) the SAP can be constructed with n edges where n is any sufficiently large even 
integer. This n will have the form 

n = N r + A  (4.10) 

where A is the number of edges in II, or II,, and r is any positive integer. Hence 

p , ( f )  3 sum of elements of P' 3 P J k P k , p J k .  . . ( r  terms) (4.1 1 )  

for any pair of indices j ,  k. By reflecting any N-SAP in x, = 0 it is easy to see that P 
is a symmetric matrix. If  we choose j ,  k so that P J k  is the largest element in P we have 

P n ( f ) b ( P h . l M 2 ) '  (4.12) 

because p N  is the sum of all elements in P. Hence 

n-' log pn(f) a N - ' (  1 - A / n )  log p N  - 2N- ' (  1 - A / n )  log[(d - l ) N d - ' ] .  

Letting n + CO in (4.13) we have 

(4.13) 

Iim inf n-I log p,(f) 3 N-l{log p N  - 2  log[(d - 1) Nd-l]} .  (4.14) 

Since the LHS of (4.14) is independent of N, we can now let N + CO and (2.10) follows 
from (4.14) and (2.8). The influence o f f  upon the rate of approach to the limit can 
be estimated from (4.13). 

n - n  

5. Constrained self-avoiding walks and patterns 

In § 4 we discussed a sufficient condition on the functionsf, defining anfwedge which 
ensured that the connective constant of SAWS in an  $wedge would be identical to that 
for SAWS on the complete lattice. We now turn to the opposite case and look for 
sufficient conditions for there to be exponentially fewer SAWS in the $wedge than on 
the complete lattice. The idea is to make use of a theorem of Kesten (1963) on patterns. 
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If P is any (finite) pattern and  c , (E ,  P) is the number of n-step self-avoiding walks in 
which the pattern P occurs at most E n  times then there exists a value of E > 0 such that 

provided that there exists a self-avoiding walk in which P appears more than twice. 
The corollary which we require is as follows: if there exists a pattern P which 

occurs more than twice in at least one self-avoiding walk in Z d  but does not occur in 
any self-avoiding walk in Z d  (f) then 

lim sup n-I log c,(f) < K .  
n-m 

Since c,(f) G c,(O, P) ( 5 . 2 )  follows immediately from (5.1). 
We now consider two examples. 

Example 1 .  Consider a SAW on Z d  confined to lie in or between the hyperplanes xd = 0 
and xd = L. Let c , ( L )  be the number of these walks which start at  the origin. If N 
and S represent steps in the positive xd and negative xd directions, and  E and W 
represent steps in the positive xI and negative x I  directions, then the pattern 

p =  E N L + ~ E s L + ’  

does not occur in any SAW confined between xd = 0 and xd = L. However, P does occur 
more than twice in a SAW in Z d  (the walk P‘ for example) so that 

lim sup  n-’ log c,( L )  < K 
n - x  

(5.3) 

for any finite L. 

Example 2. Consider a SAW on Z2(f) with f 2 ( x )  = ex sin2(.irx/L). f 2 ( x )  is unbounded 
above but is zero when x is an  integral multiple of L. The pattern 

p =  E L + I N E L ”  

occurs more than twice in a SAW in Z2(e.g. in the walk P‘) but does not occur in any 
SAW in ZZ(f). Hence 

lim sup n-] log c , ( f )  < K .  
n - x  

(5.4) 

A similar argument can easily be constructed for any function f2 which periodically 
takes any prescribed finite value. However, if f2 only returns to the prescribed finite 
value aperiodically and  sufficiently increasingly rarely, then (5.4) could be false. 

6. Walks between two parallel planes 

In this section we consider the subset C( n, L )  E C ( n )  such that the walks lie in or 
between the two hyperplanes xd = 0 and X d  = L. If we write xk(  1) for the kth coordinate 
of the lth vertex in the walk, a walk is a member of C ( n ,  L )  if 

o s x d ( / ) ~ ~ ,  1 = 0 , 1 ,  . . . ,  n. (6.1) 
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It will be convenient to construct a subset B( n,  L )  2 C (  n, L )  such that 

If the numbers of members of B(n ,  L )  and C ( N ,  L )  are b n ( L )  and c,(L) respectively 
it is straightforward (Whittington 1983) to show that 

O <  sup  n- '  log bn( L )  = lim n - '  log b , ( L )  = lim n - '  log c,(L) = K ( L )  < W. (6.3) 
n - x  n - r  n > O  

The arguments of § 5 establish that 

K ( L ) < K  (6.4) 

for any finite L. Here we shall prove that K ( L )  is a strictly monotone increasing 
function of L and that 

L - r  lim K ( L ) = K .  (6.5) 

We define the subset P ( n ,  L )  E B(n ,  L )  such that a walk in P ( n ,  L )  cannot be 
decomposed into two walks, one from B ( m ,  L )  and one from B ( n  - m, L ) ,  for any m. 
For this reason we call P ( n ,  L )  the set of prime walks. If p , ( L )  is the number of 
members of P ( n ,  L )  we can write 

B(x, L ) = C  b m ( L ) x m ,  
m 

we obtain 

We now remark that %(x, L ) + w  as x + e x p [ - ~ ( L ) ]  from below. Indeed this 
follows by an  argument exactly analogous to an  argument of Kesten (1963, theorem 
5 ) ,  and we shall not repeat the details here. This, together with (6.9), implies that 

P ( e - K ( L ) ,  L )  = 1. (6.10) 

But if K ( L )  = K ( L ' ) ,  L> L', then P ( x ,  L )  = 1 and P(x,  L')  = 1 must have a common 
root at x = e-K(L). This is impossible since pm( L )  is non-negative and  p,(  L )  2 p ,  ( L ' )  
with strict inequality for some values of m. Hence 

K ( L ) >  K ( L ' ) ,  L> L'. (6.1 1) 
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If we put f d  ( x )  = L for x 2 0, (4.14) becomes 

K 3 lim inf n - '  log c,( L )  
n-cs 

The RHS of (6.12) tends to K as L + W .  Hence 

lim K ( L )  = K .  
L-Cc 

(6.12) 

(6.13) 

7. Discussion 

We have been concerned with the number of self-avoiding walks confined to lie in a 
region between the x axis and a curve y =f(x) ,  and the generalisation of this restriction 
to d dimensions. Provided that f+ CC as x + we have shown that the connective 
constant for such walks is equal to the connective constant for the complete lattice. 
In particular, this establishes that the three kinds of walks in a wedge, corresponding 
to the zero spin space dimension limit of Cardy's problem (Cardy 1983) have the same 
connective constant as the complete lattice, for all positive wedge angles. 

In Q 5 we discussed the use of a theorem by Kesten, on patterns in self-avoiding 
walks, to establish conditions on f sufficient to ensure that only an exponentially small 
fraction of self-avoiding walks survive the condition that they are restricted to an 
f-wedge, and in Q 6 we discussed the particular case of walks confined between parallel 
lines or planes, in more detail. 

The result derived in § 4 should be contrasted with a result of Grimmett (1983) for 
the bond percolation problem. Grimmett investigated the percolation probability on 
the subset of the square lattice {(x, y )  E Z2: OG y Gf(x) ,  0 s  x}. If f ( x )  = a log(x+ 1 )  
he showed that the critical probability for percolation p c ( a )  is a continuous strictly 
decreasing function of a with p J a )  + 1 as a + O+ and p , ( a )  + f, as a + CO. Hence, if 
f(x)/log x + a as x + a, p c  = $ and if f ( x )  = o(1og x),  p c  = 1. By contrast, in the self- 
avoiding walk problem the connective constant is independent of f  i f f +  cc no matter 
how slowly. 

Grimmett's arguments depend strongly on the lattice being two-dimensional, but 
weaker results can be obtained for d > 2 .  We consider Z " ( f )  and let g (x)  be the 
number of bonds in the xI direction from xl  = x to xI  = x +  1 in Z d ( f ) .  Let Ax be the 
event that all of these bonds are blocked, and q be the probability that a given bond 
is blocked. Since the events {A,} are independent it follows from the Borel-Cantelli 
lemma that infinitely many Ax will occur with probability one if 

(7.2) 

which is infinite provided that a log q 3 -1. In this case no percolation occurs and 
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hence we have shown that 

p , ( f )  3 1 -e-’”. (7.3) 

In particular, if g ( x )  = o(log x )  then pc= 1. 
We can also show that p c <  1 if fk(x) 3 &(log x ) ” ~  for k 3 2, for x 5 xo, for any 

positive E.  We sketch the argument only for d = 3. If we consider a plane x i  = x, we, 
can order the g ( x )  vertices in this plane which are also in Z ’ ( f )  as (0, 0), ( 0 ,  l ) ,  (1, l ) ,  

coordinates. We now consider the sublattice consisting of these vertices for ail x I  
planes, the bonds between adjacent xi  planes and bonds within planes which join 
adjacent members in the foregoing ordering. By the containment theorem (Fisher 
1961) this lattice percolates less readily than Z’( f ) .  However, this lattice can be 
deformed into a subset of the two-dimensional square lattice (‘unroll’ the vertices in 
the ordered set above) so we can make use of Grimmett’s result (that pc( a )  is a strictly 
decreasing function of a )  to establish that p c  < 1 provided that fk(x)  2 &(log x)”’, 
E > 0, x 2 xo, k = 2,3. Likewise 

(1,0), (2,OL (2, 11, (2,21, (1,2),  (0,2),  (0,3),  (1,3),  . . . where we list only the (x2, x3) 

fk(x)/(log x)”*+oo as x + m  ( k = 2 , 3 )  (7.4) 

implies p , ( f )  < i. Under additional conditions, it might be true that (7.4) implies that 
p , ( f )  = pc(i.e. the critical probability of Z3). Grimmett (1984) has verified our conjecture 
that (7.4) could be replaced by 

g(x)/log x + m as x + a. (7.5) 

We can now ask for corresponding results for the king problem. If we consider 
the Ising problem on an infinite subset of the square lattice, how does the critical 
temperature depend on the subset chosen? There are a few results on the ‘slab’ geometry 
discussed in Q 6. If d = 2 there is no phase transition, on any finite width slab, but if 
d = 3 there is series analysis work on the dependence of the critical temperature (T,)  
on the width ( L )  (Allan 1970), though we are not aware of any rigorous results on 
this question. However, the spherical model has been solved in a slab geometry and 
the dependence of T, on L is known for this problem (see e.g. Watson 1972). 

For the Ising problem on an f-wedge, even in two dimensions, almost nothing 
seems to be known. It is tempting to conjecture that the behaviour follows the 
percolation pattern rather than the self-avoiding walk pattern and it would be interesting 
to investigate this. The only result of which we are aware is that the half-plane and 
the plane square lattices have the same critical temperature (McCoy and Wu 1973). 
On the other hand, the critical exponents of the correlation function and of the 
spontaneous magnetisation do depend upon the wedge angle (Barber et a1 1984). 
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